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ABSTRACT

The thermal properties of metal carboxylato complexes of the first transition metals,
Mn(II), Fe(II), Fe(III), Co(II), Ni(II) and Cu(II), and non-transition metals, Zn(II) and
Cd(Il), in the solid state were studied under non-isothermal conditions in a nitrogen
atmosphere by simultaneous TG and DTA. TG and DTA curves showed that the decomposi-
tion took place in single or multiple steps and thermal stability of the complex decreased,
approximately, with the increase of the standard potential of the central metal ion. Thermo-
dynamic parameters, such as activation energy, £, enthalpy change, AH, and entropy
change, AS, for dehydration and decomposition were determined from TG and DTA curves
by standard methods. A linear correlation was found between AH and AS, and E* and AS,
in dehydration and decomposition processes. An irreversible phase transition was observed
for Li,[Co(suc),] in the DTA curve. The residual products were mixtures of Li,CO; and
metal oxides except Li,{Mn(ox),}, Li,[Zn(mal),] and Li,[Cd(mal),}, where the final prod-
ucts were a mixture of Li,O-MnO,, Li,CO;-ZnCO; and Li,CO;- CdCO,, respectively.

INTRODUCTION

Thermal investigations of metal oxalato complexes in the solid state under
non-isothermal conditions have been carried out by several researchers
[1-9]. However, it has been found that studies on metal malonato and
succinato complexes are very scarce (8,9]. Complexes prepared were of the
type: Li,[ML,]-nH,O and Li,[Fel,]-nH,0, where M = Mn(Il), Fe(II),
Co(11), Ni(1I), Cu(II), Zn(II) and Cd(Il), L = oxalate, malonate and suc-
cinate ligands and »n = 1-7. They were characterized by elemental analyses,
IR spectral data, and thermal investigations were made under non-isother-
mal conditions in a nitrogen atmosphere in the solid state.

* Author for correspondence.
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The conversion [FeL;]*” — [FeL,]*” occurred by an electron transfer
from a coordinated ligand ion to the central metal ion. Some useful
conclusions were made from the thermodynamic parameters such as activa-
tion energy, E*, enthalpy change, AH, and entropy change, AS.

EXPERIMENTAL

The complexes of the type, Li,[ML,]-nH,0 and Li,[FeL,] - nH,O were
synthesized by a general method *. The hydrated metal salt (2.0 mmol) in
distilled water (10 cm®) was mixed with a solution of ligand (40 mmol) in the
same solvent (10 cm’) and the mixture was stirred for 3 h for complete
precipitation. The product was collected, washed with water and ethanol and
dried in a desiccator (yield = 65-70%). The chemicals used were obtained
from B.D.H. Certain modifications were made for malonato complexes due
to their high solubilities in aqueous media. The complexes were char-
acterized by elemental analyses [10] with standard semimicro techniques
(Table 1). The thermogravimetric (TG) and differential thermal analysis
(DTA) curves were recorded simultaneously using a Shimadzu DT-30 ther-
mal analyser (Japan) in a constant flow of nitrogen with a Pt-crucible using
a-Al,O, as the standard, keeping the heating rate at 10°C min~! for each
run, and using 10-20 mg powdered sample.

Activation energies ( E¥) were calculated from TG and DTA curves using
standard methods. Enthalpy changes (A H) were calculated from the DTA
peak area using indium metal as the calibrant. IR spectra were recorded in
KBr media with a Perkin-Elmer 783 IR spectrometer, and carbon was
analysed by a Perkin-Elmer 240 C elemental analyser.

RESULTS AND DISCUSSION
TG and DTA studies

TG and DTA curves of some metal oxalato, malonato and succinato
complexes are shown in Figs. 1-3. Cd(Il) and Zn(II) complexes of malonate
and succinate have no lattice water. The remaining complexes in all the
series are trihydrates, except Li,[Zn(mal),]-H,0, Li,[Cu(ox),]-2H,0,
Li,[Cd(ox),] - 4H,0, Li,[Fe(suc),] - 4H,0, Li;[Fe(ox);]- 6H,0,
Li,[Ni(ox),] - 6H,0, Li,[Cu(mal),] - 6H,0, Li,[Ni(suc),]- 6H,0,
Li,[Mn(suc),]- 7TH,0 and Li,[Co(suc),]- 7TH,0. All the complexes lost
their water molecules before decomposition, except Li,[Cu(ox),]-2H,0,
where dehydration and decomposition occurred simultaneously in a single

* For Fe(III) complex the ratio of metal salt to ligand was 1:3.



TABLE 1

Analytical data for metal oxalato (ox), malonato (mal) and succinato (suc) complexes

Compound Elemental analyses (%) *
Central metal Carbon

Li,[Mn(ox),]-3H,0 18.40 (18.38) 15.98 (16.06)
Li,[Fe(ox),]-3H,0 18.60 (18.63) 15.96 (16.01)
Li,[Fe(ox),}-6H,0 12.41 (12.44) 16.00 (16.01)
Li,[Co(ox),])-3H,0 19.43 (19.46) 15.91 (15.85)
Li,[Ni(ox),]-6H,0 16.51 (16.46) 13.42 (13.46)
Li,[Cu(ox),]-2H,0 21.92 (21.95) 16.59 (16.58)
Li,[Zn(ox),]-3H,0 21.11 (21.13) 15.55 (15.51)
Li,[Cd(ox),]-4H,0 30.00 (30.02) 12.78 (12.82)
Li,[Mn(mal),]-3H,0 16.78 (16.81) 22.00 (22.02)
Li,[Fe(mal),]-3H,0 17.00 (17.04) 21.92 (21.96)
Li,[Fe(mal);]-3H,0 12.76 (12.78) 24.68 (24.72)
Li,[Co(mal),]-3H,0 17.78 (17.81) 21.80 (21.76)
Li,[Ni(mal),]-3H,0 17.71 (17.75) 21.70 21.77)
Li,[Cu(mal),]-6H,0 16.28 (16.31) 18.43 (18.48)
Li,{Zn(mal),]-H,O 21.61 (21.69) 23.88 (23.89)
Li,[Cd(mal),] 33.99 (34.02) 21.83 (21.79)
Li,[Mn(suc),]-7H,0 12.81 (12.87) 22.40 (22.49)
Li,[Fe(suc),]-4H,0 14.92 (14.94) 25.69 (25.68)
Li,[Fe(suc);]-3H,0 11.63 (11.66) 30.00 (30.07)
Li,[Co(suc),]-7TH,0O 13.69 (13.67) 22.21(22.28)
Li,[Ni(suc),]-6H,0 14.29 (14.22) 23.30 (23.26)
Li,[Cu(suc),]-3H,0 17.52 (17.48) 26.38 (26.41)
Li,[Zn(suc),] 20.92 (20.99) 30.81 (30.83)
Li,[Cd(suc),]-3H,0 27.21 (27.26) 23.21 (23.28)

 Figures in parentheses are calculated values.

step (Fig. 1, Table 2). TG and DTA curves of all the complexes indicated the
single step dehydration except, Lis[Fe(ox),]- 6H,0, Li,{Cu(mal),]- 6H,0
and Li,[Cd(suc),]-3H,0, where multiple peaks were noticed in DTA
curves. The temperature ranges and peak temperatures of the dehydration
processes are shown in Tables 2-4. The TG curves of oxalato complexes
show a single step decomposition (Table 2), except Li,;[Fe(ox),] (Fig. 1). A
similar phenomenon was also reflected in DTA curves, except Li,[Fe(ox),],
Li,[Fe(ox);] and Li,[Zn(ox),], where multiple exothermic peaks were not-
iced. In malonato and succinato complexes single-step decompositions were
followed in TG curves, except Li,;[Fe(mal),], Li,[{Cu(mal),], Li,[Cd(mal),]
and Li,[Cd(suc),], where two-stage decompositions were found. The corre-
sponding DTA curves of malonato and succinato complexes showed multi-
ple peaks, except Li,[Co(mal),], Li,[Zn(mal),] and Li,[Co(suc),], where a
single peak appeared (Tables 3 and 4). The decomposition of Li,[Cu(mal),]
was, however, unique, in view of its decomposition through an unstable
intermediate, Li,[Cu,(mal),], where copper was stated to be univalent [11].
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Fig. 1. Thermal curves of Li;[Fe(ox);]-6H,0, sample mass 9.85 mg { ), Li; [Cu(ox),]-
2H,0, sample mass 17.00 mg (- -—--—---) and Li,[Zn(0x),]-3H,0, sample mass 18.30 mg

(---0)

Endo

Exo

/

Fig. 2. Thermal curves of Li,[Cu(mal),]-6H,0, sample mass 11.53 mg (—) and
Li,[Cd(mal),], sample mass 14.80 mg (- -—--~---).
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Fig. 3. Thermal curves of Lis[Fe(suc);]-3H,0, sample mass 11.50 mg ( ),
Li,[Co(suc),]-7H,0O, sample mass 14.80 mg (- -—--—---) and Li,[Cd(suc),]-3H,0, sample

mass 10.75 mg (------ ).

For the DTA curve of Li,[Co(suc),] a prominent phase transition was
observed (exothermic in nature) showing no weight loss along the TG curve
(280-300° C). Such a phase change in the DTA curve indicates that some
sort of structural rearrangement is occurring before the decomposition of the

complex.
The transformation of the tris- to the bis-oxalato complex suggested the

reaction to be:
Li;[Fe(C,0,);] — Li,[Fe(C,0,),] + 3Li,C,0, + CO, (1)

The liberation of CO, indicated that the central metal ion captured an
electron from the ligand ion [2]. A similar sequence was also found in the
malonato complex, and the respective DTA peak temperatures were 225 and
230°C. For L13[Fe(suc)3] the intermediate reduction step was not obtained
due to its direct conversion to Li,CO, - FeO.

For oxalato, malonato and succinato complexes the dehydration peak
temperature in either a single step or in the first step of multiple step
processes are in the order: Fe(II) > Mn(II) = Co(1I) > Zn(II) > Ni(Il) >
CddI) > Fe(III), Ni(II) > Co(Il) > Mn(II) = Fe(II) > Cu(Il) > Zn(II) >
Fe(IlI) and Ni(II) > Co(II) > Fe(1I) > Mn(1I) > Cd(1I) > Fe(IlI) = Cu(Il),
respectively (Tables 2—4) and their respective decomposition peak tempera-
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tures * follow the trend: Zn(IT) > Ni(II) > Cd(II) > Mn(II) > Co(II) >
Fe(IIl) > Fe(Il), Co(Il) = Zn(II) > Ni(II) > Cd(II) > Mn(II) > Fe(Il) >
Fe(III) = Cu(I) and Zn(IT) > Ni(II) > Co(II) > Mn(II) = Cu(II) > Cd(II) >
Fe(1I) = Fe(I1I).

Activation energies (E)) for dehydration and decomposition were com-
puted from TG curves by Horowitz and Metzger’s method [12] and from
DTA curves by Borchardt and Daniels’ equation [13]. The values are given
in Tables 2-4. In most cases values are fairly close to each other, except
Li,[Ni(mal),] - 3H,0, Li,[Zn(ox),]- 3H,0 and Li,[Fe(suc),] - 4H,0.
Activation energies (E)) for dehydration from DTA curves of oxalato,
malonato and succinato complexes follow the sequence: Fe(II) > Co(II) >
Zn(II) > Cd(II) > Mn(II) > Ni(II), Ni(II) > Mn(Il) > Co(Il) > Zn(il) >
Fe(Il) > Fe(IlI) and Fe(IT) > Ni(IT) > Co(II) > Mn(II) = Cu(II) > Fe(III),
respectively. For decomposition, activation energies (E)) from TG **
curves of oxalato, malonato and succinato complexes follow the order:
Zn(II) > Ni(Il) > Cd(I) > Co(II) > Mn(II) > Fe(IIl), Zn(II) > Ni(II) >
Fe(II) > Co(Il) > Mn(II) > Fe(I1I) and Ni(II) > Cu(Il) > Zn(II) > Co(II) >
Mn(II) > Cd(II) > Fe(III) > Fe(II), respectively.

For dehydration, the enthalpy changes (AH) and entropy changes (AS)
of oxalato and malonato complexes were in the order: Fe(III) > Fe(Il) >
Ni(II) > Cd(II) > Cu(Il) *** > Co(II) > Zn(II) > Mn(II) and Mn(II) >
Cu(1l) > Co(1l) > Ni(1I} > Cd(II) > Fe(1Il) > Fe(Il) > Zn(I1), except the
position of Cd(II) and Fe(III) is reversed for entropy changes (AS) for the
malonato series. In the succinato series, the respective order of enthalpy
changes (AH) and entropy changes (AS) are as follows: Ni(II) > Co(II) >
Mn(II) > Fe(III) > Fe(II) > Cu(I) and Ni(II) > Co(II) > Fe(III) > Mn(II)
> Cu(Il) > Fe(Il).

Activation energies (evaluated from TG curves ') for decomposition of
the oxalato and malonato series follow the order: Zn(II) > Ni(II) > Cd(II) >
Fe(IT) > Co(II) > Mn(I1) > Fe(III), and for the succinato series the order is
Ni(IT) > Cu(II) > Zn(II) > Co(II) > Mn(II) > Cd(II) > Fe(III) > Fe(II).

The enthalpy changes (A H') and entropy changes (AS) for decomposition
processes of oxalato complexes follow the order: Mn(II) > Co(II) > Ni(Il) >
Cd(II) > Zn(II). The overall enthalpy changes for malonato and succinato
complexes follow the trend: Ni(II) > Fe(II) > Mn(II) > Co(II) and Ni(I) >
Zn(II) > Fe(II) > Cu(1I), respectively. The order of entropy changes (AS)
was not evaluated for the multiple peaks in DTA curves.

* First peak is considered for multiple steps of decomposition.

** As DTA values were not available.

*** Overall enthalpy change.

t E} from TG curves were considered as very few values from DTA curves were available.
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Fig. 6. Plots of E} versus AS for the thermal decomposition of metal oxalato complexes,
1= Mn(II), 4 = Co(II), 5 = Ni(IT) and 8 = C(II).

By plotting DTA peak temperature (7,,, °C) for decomposition of
oxalato complexes against the standard potential of the central metal ions *
(Fig. 4), it was found that the thermal stability of the complex decreases,
approximately, with the increase in the tendency of the central metal ion to
capture an electron from the ligand.

A linear correlation was found by plotting AH versus AS, as shown in
Fig. 5. The values of entropy changes (AS) were calculated by the relation
[15]:

AS=AH/T, (2)

where T, is the peak temperature of decomposition in the DTA curves.
Similarly, a linear relationship was also observed by plotting EX versus AS,

* The plots of DTA peak temperatures of the complexes versus the standard potential [14] of
the central metal ion forming an aquo complex are given in Fig. 4. These potentials were
considered in order to measure the tendency of the central metal ion to capture an electron
from the ligand forming an oxalato complex, since the Dq value of H,O is near to that of
C,0;".
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as shown in Fig. 6. It has been observed that a system having higher entropy
change (AS) will require less activation energy ( E) for its decomposition.
A more or less similar sequence was also observed for dehydration processes.
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